MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1.

نویسندگان

  • Rossella Menghini
  • Viviana Casagrande
  • Marina Cardellini
  • Eugenio Martelli
  • Alessandro Terrinoni
  • Francesca Amati
  • Mariuca Vasa-Nicotera
  • Arnaldo Ippoliti
  • Giuseppe Novelli
  • Gerry Melino
  • Renato Lauro
  • Massimo Federici
چکیده

BACKGROUND Aging is a major risk factor for the development of atherosclerosis and coronary artery disease. Through a microarray approach, we have identified a microRNA (miR-217) that is progressively expressed in endothelial cells with aging. miR-217 regulates the expression of silent information regulator 1 (SirT1), a major regulator of longevity and metabolic disorders that is progressively reduced in multiple tissues during aging. METHODS AND RESULTS miR-217 inhibits SirT1 expression through a miR-217-binding site within the 3'-UTR of SirT1. In young human umbilical vein endothelial cells, human aortic endothelial cells, and human coronary artery endothelial cells, miR-217 induces a premature senescence-like phenotype and leads to an impairment in angiogenesis via inhibition of SirT1 and modulation of FoxO1 (forkhead box O1) and endothelial nitric oxide synthase acetylation. Conversely, inhibition of miR-217 in old endothelial cells ultimately reduces senescence and increases angiogenic activity via an increase in SirT1. miR-217 is expressed in human atherosclerotic lesions and is negatively correlated with SirT1 expression and with FoxO1 acetylation status. CONCLUSIONS Our data pinpoint miR-217 as an endogenous inhibitor of SirT1, which promotes endothelial senescence and is potentially amenable to therapeutic manipulation for prevention of endothelial dysfunction in metabolic disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1.

Endothelial progenitor cells (EPCs) play an important role in angiogenesis, which is essential for numerous physiological processes as well as tumor growth. Several microRNAs (miRNAs) have been reported to be involved in angiogenesis. MiR-34a, recently reported as a tumor suppressor, has been found to target silent information regulator 1 (Sirt1), leading to cell cycle arrest or apoptosis. Howe...

متن کامل

Effects of HIV‐1 gp120 and tat on endothelial cell sensescence and senescence‐associated microRNAs

The aim of this study was to determine, in vitro, the effects of X4 and R5 HIV-1 gp120 and Tat on: (1) endothelial cell senescence and (2) endothelial cell microRNA (miR) expression. Endothelial cells were treated with media without and with: R5 gp120 (100 ng/mL), X4 gp120 (100 ng/mL), or Tat (500 ng/mL) for 24 h and stained for senescence-associated β-galactosidase (SA-β-gal). Cell expression ...

متن کامل

Microrna-217 modulates human skin fibroblast senescence by directly targeting DNA methyltransferase 1

DNA methyltransferase 1 (DNMT1) is a major epigenetic regulator associated with many biological processes. However, the roles and mechanisms of DNMT1 in skin aging are incompletely understood. Here we explored the role of DNMT1 in human skin fibroblasts senescence and its related regulatory mechanisms. DNMT1 expression decreased in passage-aged fibroblasts and DNMT1 silencing in young fibroblas...

متن کامل

Curcumin Attenuates Hydrogen Peroxide-Induced Premature Senescence via the Activation of SIRT1 in Human Umbilical Vein Endothelial Cells.

Endothelial senescence has been proposed to be involved in endothelial dysfunction and atherogenesis. Curcumin, a natural phenol, possesses antioxidant and anti-inflammatory properties. However, the effect of curcumin on endothelial senescence is unclear. This study explores the effect of curcumin on hydrogen peroxide (H2O2)-induced endothelial premature senescence and the mechanisms involved. ...

متن کامل

MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression.

Endothelial senescence is thought to play a role in CAD (coronary artery disease). miR-34a (microRNA-34a) and other SIRT1 (silent information regulator 1)-related miRs have recently been found to target SIRT1 leading to endothelial senescence. In the present study, we investigated whether SIRT1-related miRs, including miR-9, miR-34a, miR-132, miR-181a, miR-195, miR-199a, miR-199b and miR-204, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 120 15  شماره 

صفحات  -

تاریخ انتشار 2009